Selective ultrafast probing of transient hot chemisorbed and precursor states of CO on Ru(0001).

نویسندگان

  • M Beye
  • T Anniyev
  • R Coffee
  • M Dell'Angela
  • A Föhlisch
  • J Gladh
  • T Katayama
  • S Kaya
  • O Krupin
  • A Møgelhøj
  • A Nilsson
  • D Nordlund
  • J K Nørskov
  • H Öberg
  • H Ogasawara
  • L G M Pettersson
  • W F Schlotter
  • J A Sellberg
  • F Sorgenfrei
  • J J Turner
  • M Wolf
  • W Wurth
  • H Oström
چکیده

We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell'Angela et al. Science 339, 1302 (2013)] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical laser fluence. Ab initio molecular dynamics simulations of CO adsorbed on Ru(0001) were performed at 1500 and 3000 K providing insight into the desorption process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast Luminescence Decay in Rhenium(I) Complexes with Imidazo[4,5-f]-1,10-Phenanthroline Ligands: TDDFT Method

The interpretation of the ultrafast luminescence decay in [Re(Br(CO)3(N^N)] complexes as a new group of chromophoric imidazo[4,5-f]-1,10-phenanthroline ligands, including 1,2-dimethoxy benzene, tert-butyl benzene (L4) and 1,2,3-trimethoxy benzene, tert-butyl benzene (L6), was studied. Fac-[Re(Br(CO)3L4 and L6] with different aryl groups were calculated in singlet and triplet excited states. The...

متن کامل

CO oxidation over Ru(0001) at near-atmospheric pressures: From chemisorbed oxygen to RuO2

RuO2(110) was formed on Ru(0001) under oxygen-rich reaction conditions at 550 K and high pressures. This phase was also synthesized using pure O2 and high reaction temperatures. Subsequently the RuO2 was subjected to CO oxidation reaction at stoichiometric and net reducing conditions at near-atmospheric pressures. Both in situ polarization modulation infrared reflection absorption spectroscopy ...

متن کامل

Oxygen adsorption on Pt/Ru(0001) layers.

Chemical properties of epitaxially grown bimetallic layers may deviate substantially from the behavior of their constituents. Strain in conjunction with electronic effects due to the nearby interface represent the dominant contribution to this modification. One of the simplest surface processes to characterize reactivity of these substrates is the dissociative adsorption of an incoming homo-nuc...

متن کامل

Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.

Hot electrons generated through plasmonic excitations in metal nanostructures show great promise for efficiently driving chemical reactions with light. However, the lifetime, yield, and mechanism of action of plasmon-generated hot electrons involved in a given photocatalytic process are not well understood. Here, we develop ultrafast surface-enhanced Raman scattering (SERS) as a direct probe of...

متن کامل

A FT - IRAS study of ammonia adsorbed on Ru ( 0001 )

The interaction between ammonia and Ru(0001) has been studied by means of Fourier-transform infrared reflection absorption spectroscopy (FT-IRAS). Chemisorption of NH 3 on Ru(0001) enhances the IR cross section of the umbrella mode of the molecule. For the first adsorption layer, changes in the IR intensity of the umbrella mode correlate with variations in the orientation of the molecules obser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 110 18  شماره 

صفحات  -

تاریخ انتشار 2013